Crystallization seeds favour crystallization only during initial growth

نویسندگان

  • E. Allahyarov
  • K. Sandomirski
  • S.U. Egelhaaf
  • H. Löwen
چکیده

Crystallization represents the prime example of a disorder-order transition. In realistic situations, however, container walls and impurities are frequently present and hence crystallization is heterogeneously seeded. Rarely the seeds are perfectly compatible with the thermodynamically favoured crystal structure and thus induce elastic distortions, which impede further crystal growth. Here we use a colloidal model system, which not only allows us to quantitatively control the induced distortions but also to visualize and follow heterogeneous crystallization with single-particle resolution. We determine the sequence of intermediate structures by confocal microscopy and computer simulations, and develop a theoretical model that describes our findings. The crystallite first grows on the seed but then, on reaching a critical size, detaches from the seed. The detached and relaxed crystallite continues to grow, except close to the seed, which now prevents crystallization. Hence, crystallization seeds facilitate crystallization only during initial growth and then act as impurities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Different Stages of Aluminum Fluoride Crystal Growth

Crystallization of Aluminum fluoride at atmospheric pressure has been considered. Structure, size and shape of crystals formed during the crystallization process have been investigated. By applying the direct analysis method for the existed aluminum in solution, the aluminum fluoride nucleation process has been detected as a concentration valley at the outset of crystallization process. The...

متن کامل

Promoting crystallization of antibody–antigen complexes via microseed matrix screening

The application of microseed matrix screening to the crystallization of antibody-antigen complexes is described for a set of antibodies that include mouse anti-IL-13 antibody C836, its humanized version H2L6 and an affinity-matured variant of H2L6, M1295. The Fab fragments of these antibodies were crystallized in complex with the antigen human IL-13. The initial crystallization screening for ea...

متن کامل

Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a con...

متن کامل

Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution.

In this paper, we have systematically investigated the aggregation behavior, confined crystallization and controlled growth of a novel polyolefin analogue-containing block copolymers (BCPs), i.e., polymethylene-b-poly(acrylic acid) diblock copolymers (PM-b-PAA). On cooling from a homogenous DMF solution at 80 °C, PM-b-PAA was found to crystallize and aggregate with well-defined disk-like micell...

متن کامل

The microscopic pathway to crystallization in supercooled liquids

Despite its fundamental and technological importance, a microscopic understanding of the crystallization process is still elusive. By computer simulations of the hard-sphere model we reveal the mechanism by which thermal fluctuations drive the transition from the supercooled liquid state to the crystal state. In particular we show that fluctuations in bond orientational order trigger the nuclea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015